The Stacks project

Lemma 47.11.5. Let $R \to S$ be a flat local ring homomorphism of Noetherian local rings. Denote $\mathfrak m \subset R$ the maximal ideal. Let $I \subset S$ be an ideal. If $S/\mathfrak mS$ is Cohen-Macaulay, then

\[ \text{depth}_ I(S) \geq \dim (S/\mathfrak mS) - \dim (S/\mathfrak mS + I) \]

Proof. By Algebra, Lemma 10.99.3 any sequence in $S$ which maps to a regular sequence in $S/\mathfrak mS$ is a regular sequence in $S$. Thus it suffices to prove the lemma in case $R$ is a field. This is a special case of Lemma 47.11.4. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BUY. Beware of the difference between the letter 'O' and the digit '0'.