The Stacks project

Lemma 22.31.3. Let $R$ be a ring. Let $(A, \text{d})$ and $(B, \text{d})$ be differential graded $R$-algebras. Let $f : N \to N'$ be a homomorphism of differential graded $(A, B)$-bimodules. Then $f$ induces a morphism of functors

\[ - \circ f : R\mathop{\mathrm{Hom}}\nolimits (N', -) \longrightarrow R\mathop{\mathrm{Hom}}\nolimits (N, -) \]

If $f$ is a quasi-isomorphism, then $f \circ -$ is an isomorphism of functors.

Proof. Write $\mathcal{B} = \text{Mod}^{dg}_{(B, \text{d})}$ the differential graded category of differential graded $B$-modules, see Example 22.26.8. Let $I$ be a differential graded $B$-module with property (I). Then $f \circ - : \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, I)$ is a map of differential graded $A$-modules. Moreover, this is functorial with respect to $I$. Since the functors $ R\mathop{\mathrm{Hom}}\nolimits (N', -)$ and $R\mathop{\mathrm{Hom}}\nolimits (N, -)$ are computed by applying $\mathop{\mathrm{Hom}}\nolimits _\mathcal {B}$ into objects with property (I) (Lemma 22.31.2) we obtain a transformation of functors as indicated.

Assume that $f$ is a quasi-isomorphism. Let $F_\bullet $ be the given filtration on $I$. Since $I = \mathop{\mathrm{lim}}\nolimits I/F_ pI$ we see that $\mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I) = \mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I/F_ pI)$ and $\mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, I) = \mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, I/F_ pI)$. Since the transition maps in the system $I/F_ pI$ are split as graded modules, we see that the transition maps in the systems $\mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I/F_ pI)$ and $\mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, I/F_ pI)$ are surjective. Hence $\mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I)$, resp. $\mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, I)$ viewed as a complex of abelian groups computes $R\mathop{\mathrm{lim}}\nolimits $ of the system of complexes $\mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I/F_ pI)$, resp. $\mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, I/F_ pI)$. See More on Algebra, Lemma 15.86.1. Thus it suffices to prove each

\[ \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I/F_ pI) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, I/F_ pI) \]

is a quasi-isomorphism. Since the surjections $I/F_{p + 1}I \to I/F_ pI$ are split as maps of graded $B$-modules we see that

\[ 0 \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', F_ pI/F_{p + 1}I) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I/F_{p + 1}I) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I/F_ pI) \to 0 \]

is a short exact sequence of differential graded $A$-modules. There is a similar sequence for $N$ and $f$ induces a map of short exact sequences. Hence by induction on $p$ (starting with $p = 0$ when $I/F_0I = 0$) we conclude that it suffices to show that the map $\mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', F_ pI/F_{p + 1}I) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, F_ pI/F_{p + 1}I)$ is a quasi-isomorphism. Since $F_ pI/F_{p + 1}I$ is a product of shifts of $A^\vee $ it suffice to prove $\mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', B^\vee [k]) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, B^\vee [k])$ is a quasi-isomorphism. By Lemma 22.19.3 it suffices to show $(N')^\vee \to N^\vee $ is a quasi-isomorphism. This is true because $f$ is a quasi-isomorphism and $(\ )^\vee $ is an exact functor. $\square$

Comments (0)

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BYV. Beware of the difference between the letter 'O' and the digit '0'.