Lemma 22.31.3. Let R be a ring. Let (A, \text{d}) and (B, \text{d}) be differential graded R-algebras. Let f : N \to N' be a homomorphism of differential graded (A, B)-bimodules. Then f induces a morphism of functors
- \circ f : R\mathop{\mathrm{Hom}}\nolimits (N', -) \longrightarrow R\mathop{\mathrm{Hom}}\nolimits (N, -)
If f is a quasi-isomorphism, then f \circ - is an isomorphism of functors.
Proof.
Write \mathcal{B} = \text{Mod}^{dg}_{(B, \text{d})} the differential graded category of differential graded B-modules, see Example 22.26.8. Let I be a differential graded B-module with property (I). Then f \circ - : \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, I) is a map of differential graded A-modules. Moreover, this is functorial with respect to I. Since the functors R\mathop{\mathrm{Hom}}\nolimits (N', -) and R\mathop{\mathrm{Hom}}\nolimits (N, -) are computed by applying \mathop{\mathrm{Hom}}\nolimits _\mathcal {B} into objects with property (I) (Lemma 22.31.2) we obtain a transformation of functors as indicated.
Assume that f is a quasi-isomorphism. Let F_\bullet be the given filtration on I. Since I = \mathop{\mathrm{lim}}\nolimits I/F_ pI we see that \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I) = \mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I/F_ pI) and \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, I) = \mathop{\mathrm{lim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, I/F_ pI). Since the transition maps in the system I/F_ pI are split as graded modules, we see that the transition maps in the systems \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I/F_ pI) and \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, I/F_ pI) are surjective. Hence \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I), resp. \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, I) viewed as a complex of abelian groups computes R\mathop{\mathrm{lim}}\nolimits of the system of complexes \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I/F_ pI), resp. \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, I/F_ pI). See More on Algebra, Lemma 15.86.1. Thus it suffices to prove each
\mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I/F_ pI) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, I/F_ pI)
is a quasi-isomorphism. Since the surjections I/F_{p + 1}I \to I/F_ pI are split as maps of graded B-modules we see that
0 \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', F_ pI/F_{p + 1}I) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I/F_{p + 1}I) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', I/F_ pI) \to 0
is a short exact sequence of differential graded A-modules. There is a similar sequence for N and f induces a map of short exact sequences. Hence by induction on p (starting with p = 0 when I/F_0I = 0) we conclude that it suffices to show that the map \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', F_ pI/F_{p + 1}I) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, F_ pI/F_{p + 1}I) is a quasi-isomorphism. Since F_ pI/F_{p + 1}I is a product of shifts of A^\vee it suffice to prove \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N', B^\vee [k]) \to \mathop{\mathrm{Hom}}\nolimits _\mathcal {B}(N, B^\vee [k]) is a quasi-isomorphism. By Lemma 22.19.3 it suffices to show (N')^\vee \to N^\vee is a quasi-isomorphism. This is true because f is a quasi-isomorphism and (\ )^\vee is an exact functor.
\square
Comments (0)