Lemma 47.24.1. Let $\varphi : R \to A$ be a finite type homomorphism of Noetherian rings. The functor $\varphi ^!$ is well defined up to isomorphism.
Proof. Suppose that $\psi _1 : P_1 = R[x_1, \ldots , x_ n] \to A$ and $\psi _2 : P_2 = R[y_1, \ldots , y_ m] \to A$ are two surjections from polynomial rings onto $A$. Then we get a commutative diagram
where $f_ j$ and $g_ i$ are chosen such that $\psi _1(f_ j) = \psi _2(y_ j)$ and $\psi _2(g_ i) = \psi _1(x_ i)$. By symmetry it suffices to prove the functors defined using $P \to A$ and $P[y_1, \ldots , y_ m] \to A$ are isomorphic. By induction we may assume $m = 1$. This reduces us to the case discussed in the next paragraph.
Here $\psi : P \to A$ is given and $\chi : P[y] \to A$ induces $\psi $ on $P$. Write $Q = P[y]$. Choose $g \in P$ with $\psi (g) = \chi (y)$. Denote $\pi : Q \to P$ the $P$-algebra map with $\pi (y) = g$. Then $\chi = \psi \circ \pi $ and hence $\chi ^! = \psi ^! \circ \pi ^!$ as both are adjoint to the restriction functor $D(A) \to D(Q)$ by the material in Section 47.13. Thus
Hence it suffices to show that $\pi ^!(K \otimes _ R^\mathbf {L} Q[1]) = K \otimes _ R^\mathbf {L} P$ Thus it suffices to show that the functor $\pi ^!(-) : D(Q) \to D(P)$ is isomorphic to $K \mapsto K \otimes _ Q^\mathbf {L} P[-1]$. This follows from Lemma 47.13.10. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #3474 by Eamon Quinlan on
Comment #3503 by Johan on