The Stacks project

\begin{equation*} \DeclareMathOperator\Coim{Coim} \DeclareMathOperator\Coker{Coker} \DeclareMathOperator\Ext{Ext} \DeclareMathOperator\Hom{Hom} \DeclareMathOperator\Im{Im} \DeclareMathOperator\Ker{Ker} \DeclareMathOperator\Mor{Mor} \DeclareMathOperator\Ob{Ob} \DeclareMathOperator\Sh{Sh} \DeclareMathOperator\SheafExt{\mathcal{E}\mathit{xt}} \DeclareMathOperator\SheafHom{\mathcal{H}\mathit{om}} \DeclareMathOperator\Spec{Spec} \newcommand\colim{\mathop{\mathrm{colim}}\nolimits} \newcommand\lim{\mathop{\mathrm{lim}}\nolimits} \newcommand\Qcoh{\mathit{Qcoh}} \newcommand\Sch{\mathit{Sch}} \newcommand\QCohstack{\mathcal{QC}\!\mathit{oh}} \newcommand\Cohstack{\mathcal{C}\!\mathit{oh}} \newcommand\Spacesstack{\mathcal{S}\!\mathit{paces}} \newcommand\Quotfunctor{\mathrm{Quot}} \newcommand\Hilbfunctor{\mathrm{Hilb}} \newcommand\Curvesstack{\mathcal{C}\!\mathit{urves}} \newcommand\Polarizedstack{\mathcal{P}\!\mathit{olarized}} \newcommand\Complexesstack{\mathcal{C}\!\mathit{omplexes}} \newcommand\Pic{\mathop{\mathrm{Pic}}\nolimits} \newcommand\Picardstack{\mathcal{P}\!\mathit{ic}} \newcommand\Picardfunctor{\mathrm{Pic}} \newcommand\Deformationcategory{\mathcal{D}\!\mathit{ef}} \end{equation*}

Lemma 10.162.8. Let $A = \mathop{\mathrm{colim}}\nolimits _{i \in I} A_ i$ be a directed colimit of rings. Let $0 \in I$ and $\varphi _0 : B_0 \to C_0$ a map of $A_0$-algebras. Assume

  1. $A \otimes _{A_0} B_0 \to A \otimes _{A_0} C_0$ is smooth,

  2. $B_0 \to C_0$ is of finite presentation.

Then for some $i \geq 0$ the map $A_ i \otimes _{A_0} B_0 \to A_ i \otimes _{A_0} C_0$ is smooth.

Proof. Write $C_0 = B_0[x_1, \ldots , x_ n]/(f_{1, 0}, \ldots , f_{m, 0})$. Write $B_ i = A_ i \otimes _{A_0} B_0$ and $C_ i = A_ i \otimes _{A_0} C_0$. Note that $C_ i = B_ i[x_1, \ldots , x_ n]/(f_{1, i}, \ldots , f_{m, i})$ where $f_{j, i}$ is the image of $f_{j, 0}$ in the polynomial ring over $B_ i$. Write $B = A \otimes _{A_0} B_0$ and $C = A \otimes _{A_0} C_0$. Note that $C = B[x_1, \ldots , x_ n]/(f_1, \ldots , f_ m)$ where $f_ j$ is the image of $f_{j, 0}$ in the polynomial ring over $B$. The assumption is that the map

\[ \text{d} : (f_1, \ldots , f_ m)/(f_1, \ldots , f_ m)^2 \longrightarrow \bigoplus C \text{d}x_ k \]

is a split injection. Let $\xi _ k \in (f_1, \ldots , f_ m)/(f_1, \ldots , f_ m)^2$ be elements such that $\sum (\partial f_ j/\partial x_ k) \xi _ k = f_ j \bmod (f_1, \ldots , f_ m)^2$. Then for sufficiently large $i$ we can find elements

\[ \xi _{k, i} \in (f_{1, i}, \ldots , f_{m, i})/(f_{1, i}, \ldots , f_{m, i})^2 \]

with $\sum (\partial f_{j, i}/\partial x_ k) \xi _{k, i} = f_{j, i} \bmod (f_{1, i}, \ldots , f_{m, i})^2$ since this is true in the limit. Then this $i$ works. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C0B. Beware of the difference between the letter 'O' and the digit '0'.