Lemma 53.12.3. Let $X \to \mathop{\mathrm{Spec}}(k)$ be smooth of relative dimension $1$ at a closed point $x \in X$. If $\kappa (x)$ is separable over $k$, then for any uniformizer $s$ in the discrete valuation ring $\mathcal{O}_{X, x}$ the element $\text{d}s$ freely generates $\Omega _{X/k, x}$ over $\mathcal{O}_{X, x}$.

Proof. The ring $\mathcal{O}_{X, x}$ is a discrete valuation ring by Algebra, Lemma 10.140.3. Since $x$ is closed $\kappa (x)$ is finite over $k$. Hence if $\kappa (x)/k$ is separable, then any uniformizer $s$ maps to a nonzero element of $\Omega _{X/k, x} \otimes _{\mathcal{O}_{X, x}} \kappa (x)$ by Algebra, Lemma 10.140.4. Since $\Omega _{X/k, x}$ is free of rank $1$ over $\mathcal{O}_{X, x}$ the result follows. $\square$

There are also:

• 2 comment(s) on Section 53.12: Riemann-Hurwitz

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).