Lemma 33.40.2. Let $k$ be a field. Let $X$ be a locally algebraic $k$-scheme. Let $K/k$ be an extension of fields. Let $y \in X_ K$ be a point with image $x$ in $X$. Then the number of geometric branches of $X$ at $x$ is the number of geometric branches of $X_ K$ at $y$.
Proof. Write $Y = X_ K$ and let $X^\nu $, resp. $Y^\nu $ be the normalization of $X$, resp. $Y$. Consider the commutative diagram
By Lemma 33.27.5 we see that the left top horizontal arrow is a universal homeomorphism. Hence it induces purely inseparable residue field extensions, see Morphisms, Lemmas 29.45.5 and 29.10.2. Thus the number of geometric branches of $Y$ at $y$ is $\sum _{\nu _ K(y') = y} [\kappa (y') : \kappa (y)]_ s$ by Lemma 33.40.1. Similarly $\sum _{\nu (x') = x} [\kappa (x') : \kappa (x)]_ s$ is the number of geometric branches of $X$ at $x$. Using Schemes, Lemma 26.17.5 our statement follows from the following algebra fact: given a field extension $l/\kappa $ and an algebraic field extension $m/\kappa $, then
where the sum is over the quotient fields of $m \otimes _\kappa l$. One can prove this in an elementary way, or one can use Lemma 33.7.6 applied to
because one can interpret $[m : \kappa ]_ s$ as the number of connected components of the right hand side and the sum $\sum _{m \otimes _\kappa l \to m'} [m' : l']_ s$ as the number of connected components of the left hand side. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)