Lemma 33.5.1. Let K/k be an extension of fields. Let X be scheme over k and set Y = X_ K. If y \in Y with image x \in X, then
\mathcal{O}_{X, x} \to \mathcal{O}_{Y, y} is a faithfully flat local ring homomorphism,
with \mathfrak p_0 = \mathop{\mathrm{Ker}}(\kappa (x) \otimes _ k K \to \kappa (y)) we have \kappa (y) = \kappa (\mathfrak p_0),
\mathcal{O}_{Y, y} = (\mathcal{O}_{X, x} \otimes _ k K)_\mathfrak p where \mathfrak p \subset \mathcal{O}_{X, x} \otimes _ k K is the inverse image of \mathfrak p_0.
we have \mathcal{O}_{Y, y}/\mathfrak m_ x\mathcal{O}_{Y, y} = (\kappa (x) \otimes _ k K)_{\mathfrak p_0}
Comments (0)
There are also: