Lemma 33.36.2. Let p > 0 be a prime number. Let f : X \to Y be a morphism of schemes in characteristic p. Then the diagram
\xymatrix{ X \ar[d]_ f \ar[r]_{F_ X} & X \ar[d]^ f \\ Y \ar[r]^{F_ Y} & Y }
commutes.
Lemma 33.36.2. Let p > 0 be a prime number. Let f : X \to Y be a morphism of schemes in characteristic p. Then the diagram
commutes.
Proof. This follows from the following trivial algebraic fact: if \varphi : A \to B is a homomorphism of rings of characteristic p, then \varphi (a^ p) = \varphi (a)^ p. \square
Comments (0)
There are also: