The Stacks project

Lemma 53.3.2. Let $k$ be a field. Let $X$ be a nonsingular proper curve over $k$. Let $(\mathcal{L}, V)$ be a $\mathfrak g^ r_ d$ on $X$. Then there exists a morphism

\[ \varphi : X \longrightarrow \mathbf{P}^ r_ k = \text{Proj}(k[T_0, \ldots , T_ r]) \]

of varieties over $k$ and a map $\alpha : \varphi ^*\mathcal{O}_{\mathbf{P}^ r_ k}(1) \to \mathcal{L}$ such that $\varphi ^*T_0, \ldots , \varphi ^*T_ r$ are sent to a basis of $V$ by $\alpha $.

Proof. Let $s_0, \ldots , s_ r \in V$ be a $k$-basis. Since $X$ is nonsingular the image $\mathcal{L}' \subset \mathcal{L}$ of the map $s_0, \ldots , s_ r : \mathcal{O}_ X^{\oplus r + 1} \to \mathcal{L}$ is an invertible $\mathcal{O}_ X$-module for example by Divisors, Lemma 31.11.11. Then we use Constructions, Lemma 27.13.1 to get a morphism

\[ \varphi = \varphi _{(\mathcal{L}', (s_0, \ldots , s_ r))} : X \longrightarrow \mathbf{P}^ r_ k \]

as in the statement of the lemma. $\square$

Comments (2)

Comment #7489 by Hao Peng on

should be replaced by

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CCP. Beware of the difference between the letter 'O' and the digit '0'.