The Stacks project

Remark 53.3.6 (Classical definition). Let $X$ be a smooth projective curve over an algebraically closed field $k$. We say two effective Cartier divisors $D, D' \subset X$ are linearly equivalent if and only if $\mathcal{O}_ X(D) \cong \mathcal{O}_ X(D')$ as $\mathcal{O}_ X$-modules. Since $\mathop{\mathrm{Pic}}\nolimits (X) = \text{Cl}(X)$ (Divisors, Lemma 31.27.7) we see that $D$ and $D'$ are linearly equivalent if and only if the Weil divisors associated to $D$ and $D'$ define the same element of $\text{Cl}(X)$. Given an effective Cartier divisor $D \subset X$ of degree $d$ the complete linear system or complete linear series $|D|$ of $D$ is the set of effective Cartier divisors $E \subset X$ which are linearly equivalent to $D$. Another way to say it is that $|D|$ is the set of closed points of the fibre of the morphism

\[ \gamma _ d : \underline{\mathrm{Hilb}}^ d_{X/k} \longrightarrow \underline{\mathrm{Pic}}^ d_{X/k} \]

(Picard Schemes of Curves, Lemma 44.6.7) over the closed point corresponding to $\mathcal{O}_ X(D)$. This gives $|D|$ a natural scheme structure and it turns out that $|D| \cong \mathbf{P}^ m_ k$ with $m + 1 = h^0(\mathcal{O}_ X(D))$. In fact, more canonically we have

\[ |D| = \mathbf{P}(H^0(X, \mathcal{O}_ X(D))^\vee ) \]

where $(-)^\vee $ indicates $k$-linear dual and $\mathbf{P}$ is as in Constructions, Example 27.21.2. In this language a linear system or a linear series on $X$ is a closed subvariety $L \subset |D|$ which can be cut out by linear equations. If $L$ has dimension $r$, then $L = \mathbf{P}(V^\vee )$ where $V \subset H^0(X, \mathcal{O}_ X(D))$ is a linear subspace of dimension $r + 1$. Thus the classical linear series $L \subset |D|$ corresponds to the linear series $(\mathcal{O}_ X(D), V)$ as defined above.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CCT. Beware of the difference between the letter 'O' and the digit '0'.