Processing math: 100%

The Stacks project

Lemma 53.18.5. Let k be a field. Let C be a proper curve over k. Set \kappa = H^0(C, \mathcal{O}_ C). Then

[\kappa : k]_ s \dim _\kappa H^1(C, \mathcal{O}_ C) \geq g_{geom}(C/k)

Proof. Varieties, Lemma 33.26.2 implies \kappa is a field and a finite extension of k. By Fields, Lemma 9.14.8 we have [\kappa : k]_ s = |\mathop{\mathrm{Mor}}\nolimits _ k(\kappa , \overline{k})| and hence \mathop{\mathrm{Spec}}(\kappa \otimes _ k \overline{k}) has [\kappa : k]_ s points each with residue field \overline{k}. Thus

C_{\overline{k}} = \bigcup \nolimits _{t \in \mathop{\mathrm{Spec}}(\kappa \otimes _ k \overline{k})} C_ t

(set theoretic union). Here C_ t = C \times _{\mathop{\mathrm{Spec}}(\kappa ), t} \mathop{\mathrm{Spec}}(\overline{k}) where we view t as a k-algebra map t : \kappa \to \overline{k}. The conclusion is that g_{geom}(C/k) = \sum _ t g_{geom}(C_ t/\overline{k}) and the sum is over an index set of size [\kappa : k]_ s. We have

H^0(C_ t, \mathcal{O}_{C_ t}) = \overline{k} \quad \text{and}\quad \dim _{\overline{k}} H^1(C_ t, \mathcal{O}_{C_ t}) = \dim _\kappa H^1(C, \mathcal{O}_ C)

by cohomology and base change (Cohomology of Schemes, Lemma 30.5.2). Observe that the normalization C_ t^\nu is the disjoint union of the nonsingular projective models of the irreducible components of C_ t (Morphisms, Lemma 29.54.6). Hence \dim _{\overline{k}} H^1(C_ t^\nu , \mathcal{O}_{C_ t^\nu }) is equal to g_{geom}(C_ t/\overline{k}). By Lemma 53.18.3 we have

\dim _{\overline{k}} H^1(C_ t, \mathcal{O}_{C_ t}) \geq \dim _{\overline{k}} H^1(C_ t^\nu , \mathcal{O}_{C_ t^\nu })

and this finishes the proof. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.