The Stacks project

Lemma 101.35.6. Let $\mathcal{X}, \mathcal{Y}$ be algebraic stacks étale over an algebraic stack $\mathcal{Z}$. Any morphism $\mathcal{X} \to \mathcal{Y}$ over $\mathcal{Z}$ is étale.

Proof. The morphism $\mathcal{X} \to \mathcal{Y}$ is DM by Lemma 101.4.12. Let $W \to \mathcal{Z}$ be a surjective smooth morphism whose source is an algebraic space. Let $V \to \mathcal{Y} \times _\mathcal {Z} W$ be a surjective étale morphism whose source is an algebraic space (Lemma 101.21.7). Let $U \to \mathcal{X} \times _\mathcal {Y} V$ be a surjective étale morphism whose source is an algebraic space (Lemma 101.21.7). Then

\[ U \longrightarrow \mathcal{X} \times _\mathcal {Z} W \]

is surjective étale as the composition of $U \to \mathcal{X} \times _\mathcal {Y} V$ and the base change of $V \to \mathcal{Y} \times _\mathcal {Z} W$ by $\mathcal{X} \times _\mathcal {Z} W \to \mathcal{Y} \times _\mathcal {Z} W$. Hence it suffices to show that $U \to W$ is étale. Since $U \to W$ and $V \to W$ are étale because $\mathcal{X} \to \mathcal{Z}$ and $\mathcal{Y} \to \mathcal{Z}$ are étale, this follows from the version of the lemma for algebraic spaces, namely Morphisms of Spaces, Lemma 67.39.11. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CIR. Beware of the difference between the letter 'O' and the digit '0'.