Definition 99.3.1. Let $S$ be a scheme. Let $f : \mathcal{X} \to \mathcal{Y}$ be a $1$-morphism of categories fibred in groupoids over $(\mathit{Sch}/S)_{fppf}$. We say $f$ is *limit preserving* if for every directed limit $U = \mathop{\mathrm{lim}}\nolimits U_ i$ of affine schemes over $S$ the diagram

of fibre categories is $2$-cartesian.

## Comments (0)