Lemma 106.10.1. Let $Y$ be a quasi-compact and quasi-separated algebraic space. Let $V \subset Y$ be a quasi-compact open. Let $f : \mathcal{X} \to V$ be surjective, flat, and locally of finite presentation. Then there exists a finite surjective morphism $g : Y' \to Y$ such that $V' = g^{-1}(V) \to Y$ factors Zariski locally through $f$.

Proof. We first prove this when $Y$ is a scheme. We may choose a scheme $U$ and a surjective smooth morphism $U \to \mathcal{X}$. Then $\{ U \to V\}$ is an fppf covering of schemes. By More on Morphisms, Lemma 37.48.6 there exists a finite surjective morphism $V' \to V$ such that $V' \to V$ factors Zariski locally through $U$. By More on Morphisms, Lemma 37.48.4 we can find a finite surjective morphism $Y' \to Y$ whose restriction to $V$ is $V' \to V$ as desired.

If $Y$ is an algebraic space, then we see the lemma is true by first doing a finite base change by a finite surjective morphism $Y' \to Y$ where $Y'$ is a scheme. See Limits of Spaces, Proposition 70.16.1. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).