The Stacks project

Remark 52.6.21. Let $(\mathcal{C}, \mathcal{O})$ be a ringed site. Let $\mathcal{I} \subset \mathcal{O}$ be a finite type sheaf of ideals. Let $K \mapsto K^\wedge $ be the derived completion of Proposition 52.6.12. Let $U \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ be an object such that $\mathcal{I}$ is generated as an ideal sheaf by $f_1, \ldots , f_ r \in \mathcal{I}(U)$. Set $A = \mathcal{O}(U)$ and $I = (f_1, \ldots , f_ r) \subset A$. Warning: it may not be the case that $I = \mathcal{I}(U)$. Then we have

\[ R\Gamma (U, K^\wedge ) = R\Gamma (U, K)^\wedge \]

where the right hand side is the derived completion of the object $R\Gamma (U, K)$ of $D(A)$ with respect to $I$. This is true because derived completion commutes with localization (Remark 52.6.14) and Lemma 52.6.20.

Comments (0)

There are also:

  • 2 comment(s) on Section 52.6: Derived completion on a ringed site

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CQI. Beware of the difference between the letter 'O' and the digit '0'.