Loading web-font TeX/Math/Italic

The Stacks project

Remark 98.9.2. Let S be a locally Noetherian scheme. Let p : \mathcal{X} \to (\mathit{Sch}/S)_{fppf} be a category fibred in groupoids. Let \xi = (R, \xi _ n, f_ n) be a formal object. Set k = R/\mathfrak m and x_0 = \xi _1. The formal object \xi defines a formal object \xi of the predeformation category \mathcal{F}_{\mathcal{X}, k, x_0}. This follows immediately from Definition 98.9.1 above, Formal Deformation Theory, Definition 90.7.1, and our construction of the predeformation category \mathcal{F}_{\mathcal{X}, k, x_0} in Section 98.3.


Comments (0)

There are also:

  • 6 comment(s) on Section 98.9: Formal objects

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.