Lemma 98.12.3. With notation as in Definition 98.12.2. Let $R = \mathcal{O}_{U, u_0}^\wedge $. Let $\xi $ be the formal object of $\mathcal{X}$ over $R$ associated to $x|_{\mathop{\mathrm{Spec}}(R)}$, see (98.9.3.1). Then
Proof. Observe that $\mathcal{O}_{U, u_0}$ is a Noetherian local $S$-algebra with residue field $k$. Hence $R = \mathcal{O}_{U, u_0}^\wedge $ is an object of $\mathcal{C}_\Lambda ^\wedge $, see Formal Deformation Theory, Definition 90.4.1. Recall that $\xi $ is versal if $\underline{\xi } : \underline{R}|_{\mathcal{C}_\Lambda } \to \mathcal{F}_{\mathcal{X}, k, x_0}$ is smooth and $x$ is versal at $u_0$ if $\hat x : \mathcal{F}_{(\mathit{Sch}/U)_{fppf}, k, u_0} \to \mathcal{F}_{\mathcal{X}, k, x_0}$ is smooth. There is an identification of predeformation categories
see Formal Deformation Theory, Remark 90.7.12 for notation. Namely, given an Artinian local $S$-algebra $A$ with residue field identified with $k$ we have
Unwinding the definitions the reader verifies that the resulting map
is equal to $\underline{\xi }$ and we see that the lemma is true. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)