Lemma 96.12.3. With notation as in Definition 96.12.2. Let $R = \mathcal{O}_{U, u_0}^\wedge$. Let $\xi$ be the formal object of $\mathcal{X}$ over $R$ associated to $x|_{\mathop{\mathrm{Spec}}(R)}$, see (96.9.3.1). Then

$x\text{ is versal at }u_0 \Leftrightarrow \xi \text{ is versal}$

Proof. Observe that $\mathcal{O}_{U, u_0}$ is a Noetherian local $S$-algebra with residue field $k$. Hence $R = \mathcal{O}_{U, u_0}^\wedge$ is an object of $\mathcal{C}_\Lambda ^\wedge$, see Formal Deformation Theory, Definition 88.4.1. Recall that $\xi$ is versal if $\underline{\xi } : \underline{R}|_{\mathcal{C}_\Lambda } \to \mathcal{F}_{\mathcal{X}, k, x_0}$ is smooth and $x$ is versal at $u_0$ if $\hat x : \mathcal{F}_{(\mathit{Sch}/U)_{fppf}, k, u_0} \to \mathcal{F}_{\mathcal{X}, k, x_0}$ is smooth. There is an identification of predeformation categories

$\underline{R}|_{\mathcal{C}_\Lambda } = \mathcal{F}_{(\mathit{Sch}/U)_{fppf}, k, u_0},$

see Formal Deformation Theory, Remark 88.7.12 for notation. Namely, given an Artinian local $S$-algebra $A$ with residue field identified with $k$ we have

$\mathop{\mathrm{Mor}}\nolimits _{\mathcal{C}_\Lambda ^\wedge }(R, A) = \{ \varphi \in \mathop{\mathrm{Mor}}\nolimits _ S(\mathop{\mathrm{Spec}}(A), U) \mid \varphi |_{\mathop{\mathrm{Spec}}(k)} = u_0\}$

Unwinding the definitions the reader verifies that the resulting map

$\underline{R}|_{\mathcal{C}_\Lambda } = \mathcal{F}_{(\mathit{Sch}/U)_{fppf}, k, u_0} \xrightarrow {\hat x} \mathcal{F}_{\mathcal{X}, k, x_0},$

is equal to $\underline{\xi }$ and we see that the lemma is true. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).