Lemma 20.11.12. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $I$ be a set. For $i \in I$ let $\mathcal{F}_ i$ be an $\mathcal{O}_ X$-module. Let $U \subset X$ be open. The canonical map
is an isomorphism for $p = 0$ and injective for $p = 1$.
Lemma 20.11.12. Let $(X, \mathcal{O}_ X)$ be a ringed space. Let $I$ be a set. For $i \in I$ let $\mathcal{F}_ i$ be an $\mathcal{O}_ X$-module. Let $U \subset X$ be open. The canonical map
is an isomorphism for $p = 0$ and injective for $p = 1$.
Proof. The statement for $p = 0$ is true because the product of sheaves is equal to the product of the underlying presheaves, see Sheaves, Section 6.29. Proof for $p = 1$. Set $\mathcal{F} = \prod \mathcal{F}_ i$. Let $\xi \in H^1(U, \mathcal{F})$ map to zero in $\prod H^1(U, \mathcal{F}_ i)$. By locality of cohomology, see Lemma 20.7.2, there exists an open covering $\mathcal{U} : U = \bigcup U_ j$ such that $\xi |_{U_ j} = 0$ for all $j$. By Lemma 20.11.3 this means $\xi $ comes from an element $\check\xi \in \check H^1(\mathcal{U}, \mathcal{F})$. Since the maps $\check H^1(\mathcal{U}, \mathcal{F}_ i) \to H^1(U, \mathcal{F}_ i)$ are injective for all $i$ (by Lemma 20.11.3), and since the image of $\xi $ is zero in $\prod H^1(U, \mathcal{F}_ i)$ we see that the image $\check\xi _ i = 0$ in $\check H^1(\mathcal{U}, \mathcal{F}_ i)$. However, since $\mathcal{F} = \prod \mathcal{F}_ i$ we see that $\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F})$ is the product of the complexes $\check{\mathcal{C}}^\bullet (\mathcal{U}, \mathcal{F}_ i)$, hence by Homology, Lemma 12.32.1 we conclude that $\check\xi = 0$ as desired. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)