The Stacks project

Example 93.5.1 (Representations of a group). Let $\Gamma $ be a group. Let $\mathcal{F}$ be the category defined as follows

  1. an object is a triple $(A, M, \rho )$ consisting of an object $A$ of $\mathcal{C}_\Lambda $, a finite projective $A$-module $M$, and a homomorphism $\rho : \Gamma \to \text{GL}_ A(M)$, and

  2. a morphism $(f, g) : (B, N, \tau ) \to (A, M, \rho )$ consists of a morphism $f : B \to A$ in $\mathcal{C}_\Lambda $ together with a map $g : N \to M$ which is $f$-linear and $\Gamma $-equivariant and induces an isomorpism $N \otimes _{B, f} A \cong M$.

The functor $p : \mathcal{F} \to \mathcal{C}_\Lambda $ sends $(A, M, \rho )$ to $A$ and $(f, g)$ to $f$. It is clear that $p$ is cofibred in groupoids. Given a finite dimensional $k$-vector space $V$ and a representation $\rho _0 : \Gamma \to \text{GL}_ k(V)$, let $x_0 = (k, V, \rho _0)$ be the corresponding object of $\mathcal{F}(k)$. We set

\[ \mathcal{D}\! \mathit{ef}_{V, \rho _0} = \mathcal{F}_{x_0} \]

Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D3J. Beware of the difference between the letter 'O' and the digit '0'.