The Stacks project

Situation 97.15.1. We define a category $\mathcal{C}\! \mathit{urves}$ as follows:

  1. Objects are families of curves. More precisely, an object is a morphism $f : X \to S$ where the base $S$ is a scheme, the total space $X$ is an algebraic space, and $f$ is flat, proper, of finite presentation, and has relative dimension $\leq 1$ (Morphisms of Spaces, Definition 65.33.2).

  2. A morphism $(X' \to S') \to (X \to S)$ between objects is given by a pair $(f, g)$ where $f : X' \to X$ is a morphism of algebraic spaces and $g : S' \to S$ is a morphism of schemes which fit into a commutative diagram

    \[ \xymatrix{ X' \ar[d] \ar[r]_ f & X \ar[d] \\ S' \ar[r]^ g & S } \]

    inducing an isomorphism $X' \to S' \times _ S X$, in other words, the diagram is cartesian.

The forgetful functor

\[ p : \mathcal{C}\! \mathit{urves}\longrightarrow \mathit{Sch}_{fppf},\quad (X \to S) \longmapsto S \]

is how we view $\mathcal{C}\! \mathit{urves}$ as a category over $\mathit{Sch}_{fppf}$ (see Section 97.2 for notation).


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D4Z. Beware of the difference between the letter 'O' and the digit '0'.