The Stacks project

Lemma 20.41.6. In Situation 20.41.3 assume

  1. $X = U_1 \cup \ldots \cup U_ n$ with $U_ i \in \mathcal{B}$,

  2. for $U, V \in \mathcal{B}$ we have $U \cap V = \bigcup _{W \in \mathcal{B}, W \subset U \cap V} W$,

  3. for any $U \in \mathcal{B}$ we have $\mathop{\mathrm{Ext}}\nolimits ^ i(K_ U, K_ U) = 0$ for $i < 0$.

Then a solution exists and is unique up to unique isomorphism.

Proof. Uniqueness was seen in Lemma 20.41.4. We may prove the lemma by induction on $n$. The case $n = 1$ is immediate.

The case $n = 2$. Consider the isomorphism $\rho _{U_1, U_2} : K_{U_1}|_{U_1 \cap U_2} \to K_{U_2}|_{U_1 \cap U_2}$ constructed in Remark 20.41.5. By Lemma 20.41.1 we obtain an object $K$ in $D(\mathcal{O}_ X)$ and isomorphisms $\rho _{U_1} : K|_{U_1} \to K_{U_1}$ and $\rho _{U_2} : K|_{U_2} \to K_{U_2}$ compatible with $\rho _{U_1, U_2}$. Take $U \in \mathcal{B}$. We will construct an isomorphism $\rho _ U : K|_ U \to K_ U$ and we will leave it to the reader to verify that $(K, \rho _ U)$ is a solution. Consider the set $\mathcal{B}'$ of elements of $\mathcal{B}$ contained in either $U \cap U_1$ or contained in $U \cap U_2$. Then $(K_ U, \rho ^ U_{U'})$ is a solution for the system $(\{ K_{U'}\} _{U' \in \mathcal{B}'}, \{ \rho _{V'}^{U'}\} _{V' \subset U'\text{ with }U', V' \in \mathcal{B}'})$ on the ringed space $U$. We claim that $(K|_ U, \tau _{U'})$ is another solution where $\tau _{U'}$ for $U' \in \mathcal{B}'$ is chosen as follows: if $U' \subset U_1$ then we take the composition

\[ K|_{U'} \xrightarrow {\rho _{U_1}|_{U'}} K_{U_1}|_{U'} \xrightarrow {\rho ^{U_1}_{U'}} K_{U'} \]

and if $U' \subset U_2$ then we take the composition

\[ K|_{U'} \xrightarrow {\rho _{U_2}|_{U'}} K_{U_2}|_{U'} \xrightarrow {\rho ^{U_2}_{U'}} K_{U'}. \]

To verify this is a solution use the property of the map $\rho _{U_1, U_2}$ described in Remark 20.41.5 and the compatibility of $\rho _{U_1}$ and $\rho _{U_2}$ with $\rho _{U_1, U_2}$. Having said this we apply Lemma 20.41.4 to see that we obtain a unique isomorphism $K|_{U'} \to K_{U'}$ compatible with the maps $\tau _{U'}$ and $\rho ^ U_{U'}$ for $U' \in \mathcal{B}'$.

The case $n > 2$. Consider the open subspace $X' = U_1 \cup \ldots \cup U_{n - 1}$ and let $\mathcal{B}'$ be the set of elements of $\mathcal{B}$ contained in $X'$. Then we find a system $(\{ K_ U\} _{U \in \mathcal{B}'}, \{ \rho _ V^ U\} _{U, V \in \mathcal{B}'})$ on the ringed space $X'$ to which we may apply our induction hypothesis. We find a solution $(K_{X'}, \rho ^{X'}_ U)$. Then we can consider the collection $\mathcal{B}^* = \mathcal{B} \cup \{ X'\} $ of opens of $X$ and we see that we obtain a system $(\{ K_ U\} _{U \in \mathcal{B}^*}, \{ \rho _ V^ U\} _{V \subset U\text{ with }U, V \in \mathcal{B}^*})$. Note that this new system also satisfies condition (3) by Lemma 20.41.4 applied to the solution $K_{X'}$. For this system we have $X = X' \cup U_ n$. This reduces us to the case $n = 2$ we worked out above. $\square$

Comments (0)

There are also:

  • 2 comment(s) on Section 20.41: Glueing complexes

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D6A. Beware of the difference between the letter 'O' and the digit '0'.