Exercise 111.43.8. Let $A$ be a ring. Let $I = (f_1, \ldots , f_ t)$ be a finitely generated ideal of $A$. Let $U \subset \mathop{\mathrm{Spec}}(A)$ be the complement of $V(I)$. Given a quasi-coherent $\mathcal{O}_{\mathop{\mathrm{Spec}}(A)}$-module $\mathcal{F}$ and $\xi \in H^ p(U, \mathcal{F})$ with $p > 0$, show that there exists $n > 0$ such that $f_ i^ n \xi = 0$ for $i = 1, \ldots , t$. Hint: One possible way to proceed is to use the complex you found in Exercise 111.43.2.

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)