Exercise 111.43.9. Let $A$ be a ring. Let $I = (f_1, \ldots , f_ t)$ be a finitely generated ideal of $A$. Let $U \subset \mathop{\mathrm{Spec}}(A)$ be the complement of $V(I)$. Let $M$ be an $A$-module whose $I$-torsion is zero, i.e., $0 = \mathop{\mathrm{Ker}}((f_1, \ldots , f_ t) : M \to M^{\oplus t})$. Show that there is a canonical isomorphism
\[ H^0(U, \widetilde{M}) = \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _ A(I^ n, M). \]
Warning: this is not trivial.
Comments (0)