Exercise 111.43.9. Let A be a ring. Let I = (f_1, \ldots , f_ t) be a finitely generated ideal of A. Let U \subset \mathop{\mathrm{Spec}}(A) be the complement of V(I). Let M be an A-module whose I-torsion is zero, i.e., 0 = \mathop{\mathrm{Ker}}((f_1, \ldots , f_ t) : M \to M^{\oplus t}). Show that there is a canonical isomorphism
H^0(U, \widetilde{M}) = \mathop{\mathrm{colim}}\nolimits \mathop{\mathrm{Hom}}\nolimits _ A(I^ n, M).
Warning: this is not trivial.
Comments (0)