Lemma 34.8.10. Let \mathit{Sch}_{ph} be a big ph site as in Definition 34.8.9. Let T \in \mathop{\mathrm{Ob}}\nolimits (\mathit{Sch}_{ph}). Let \{ T_ i \to T\} _{i \in I} be an arbitrary ph covering of T.
There exists a covering \{ U_ j \to T\} _{j \in J} of T in the site \mathit{Sch}_{ph} which refines \{ T_ i \to T\} _{i \in I}.
If \{ T_ i \to T\} _{i \in I} is a standard ph covering, then it is tautologically equivalent to a covering of \mathit{Sch}_{ph}.
If \{ T_ i \to T\} _{i \in I} is a Zariski covering, then it is tautologically equivalent to a covering of \mathit{Sch}_{ph}.
Comments (0)
There are also: