there exists a subset $\mathcal{B} \subset \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ such that
every object of $\mathcal{C}$ has a covering whose members are in $\mathcal{B}$, and
for every $V \in \mathcal{B}$ there exists an integer $d_ V$ and a cofinal system $\text{Cov}_ V$ of coverings of $V$ such that
\[ H^ p(V_ i, \mathcal{F}) = 0 \text{ for } \{ V_ i \to V\} \in \text{Cov}_ V,\ p > d_ V, \text{ and } \mathcal{F} \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A}_ V) \]
Comments (0)