## 111.48 Global Exts

Exercise 111.48.1. Let $k$ be a field. Let $X = \mathbf{P}^3_ k$. Let $L \subset X$ and $P \subset X$ be a line and a plane, viewed as closed subschemes cut out by $1$, resp., $2$ linear equations. Compute the dimensions of

$\mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{O}_ L, \mathcal{O}_ P)$

for all $i$. Make sure to do both the case where $L$ is contained in $P$ and the case where $L$ is not contained in $P$.

Exercise 111.48.2. Let $k$ be a field. Let $X = \mathbf{P}^ n_ k$. Let $Z \subset X$ be a closed $k$-rational point viewed as a closed subscheme. For example the point with homogeneous coordinates $(1 : 0 : \ldots : 0)$. Compute the dimensions of

$\mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{O}_ Z, \mathcal{O}_ Z)$

for all $i$.

Exercise 111.48.3. Let $X$ be a ringed space. Define cup-product maps

$\mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{G}, \mathcal{H}) \times \mathop{\mathrm{Ext}}\nolimits ^ j_ X(\mathcal{F}, \mathcal{G}) \longrightarrow \mathop{\mathrm{Ext}}\nolimits ^{i + j}_ X(\mathcal{F}, \mathcal{H})$

for $\mathcal{O}_ X$-modules $\mathcal{F}, \mathcal{G}, \mathcal{H}$. (Hint: this is a super general thing.)

Exercise 111.48.4. Let $X$ be a ringed space. Let $\mathcal{E}$ be a finite locally free $\mathcal{O}_ X$-module with dual $\mathcal{E}^\vee = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}, \mathcal{O}_ X)$. Prove the following statements

1. $\mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ X}( \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{E}, \mathcal{G}) = \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ X}( \mathcal{F}, \mathcal{E}^\vee \otimes _{\mathcal{O}_ X} \mathcal{G}) = \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ X}( \mathcal{F}, \mathcal{G}) \otimes _{\mathcal{O}_ X} \mathcal{E}^\vee$, and

2. $\mathop{\mathrm{Ext}}\nolimits ^ i_ X( \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{E}, \mathcal{G}) = \mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{F}, \mathcal{E}^\vee \otimes _{\mathcal{O}_ X} \mathcal{G})$.

Here $\mathcal{F}$ and $\mathcal{G}$ are $\mathcal{O}_ X$-modules. Conclude that

$\mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{E}, \mathcal{G}) = H^ i(X, \mathcal{E}^\vee \otimes _{\mathcal{O}_ X} \mathcal{G})$

Exercise 111.48.5. Let $X$ be a ringed space. Let $\mathcal{E}$ be a finite locally free $\mathcal{O}_ X$-module. Construct a trace map

$\mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{E}, \mathcal{E}) \to H^ i(X, \mathcal{O}_ X)$

for all $i$. Generalize to a trace map

$\mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{E}, \mathcal{E} \otimes _{\mathcal{O}_ X} \mathcal{F}) \to H^ i(X, \mathcal{F})$

for any $\mathcal{O}_ X$-module $\mathcal{F}$.

Exercise 111.48.6. Let $k$ be a field. Let $X = \mathbf{P}^ d_ k$. Set $\omega _{X/k} = \mathcal{O}_ X(-d - 1)$. Prove that for finite locally free modules $\mathcal{E}$, $\mathcal{F}$ the cup product on Ext combined with the trace map on Ext

$\mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{E}, \mathcal{F} \otimes _{\mathcal{O}_ X} \omega _{X/k}) \times \mathop{\mathrm{Ext}}\nolimits ^{d - i}_ X(\mathcal{F}, \mathcal{E}) \to \mathop{\mathrm{Ext}}\nolimits _ X^ d(\mathcal{F}, \mathcal{F} \otimes _{\mathcal{O}_ X} \omega _{X/k}) \to H^ d(X, \omega _{X/k}) = k$

produces a nondegenerate pairing. Hint: you can either reprove duality in this setting or you can reduce to cohomology of sheaves and apply the Serre duality theorem as proved in the lectures.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).