111.48 Global Exts
Exercise 111.48.1. Let k be a field. Let X = \mathbf{P}^3_ k. Let L \subset X and P \subset X be a line and a plane, viewed as closed subschemes cut out by 1, resp., 2 linear equations. Compute the dimensions of
\mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{O}_ L, \mathcal{O}_ P)
for all i. Make sure to do both the case where L is contained in P and the case where L is not contained in P.
Exercise 111.48.2. Let k be a field. Let X = \mathbf{P}^ n_ k. Let Z \subset X be a closed k-rational point viewed as a closed subscheme. For example the point with homogeneous coordinates (1 : 0 : \ldots : 0). Compute the dimensions of
\mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{O}_ Z, \mathcal{O}_ Z)
for all i.
Exercise 111.48.3. Let X be a ringed space. Define cup-product maps
\mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{G}, \mathcal{H}) \times \mathop{\mathrm{Ext}}\nolimits ^ j_ X(\mathcal{F}, \mathcal{G}) \longrightarrow \mathop{\mathrm{Ext}}\nolimits ^{i + j}_ X(\mathcal{F}, \mathcal{H})
for \mathcal{O}_ X-modules \mathcal{F}, \mathcal{G}, \mathcal{H}. (Hint: this is a super general thing.)
Exercise 111.48.4. Let X be a ringed space. Let \mathcal{E} be a finite locally free \mathcal{O}_ X-module with dual \mathcal{E}^\vee = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}, \mathcal{O}_ X). Prove the following statements
\mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ X}( \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{E}, \mathcal{G}) = \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ X}( \mathcal{F}, \mathcal{E}^\vee \otimes _{\mathcal{O}_ X} \mathcal{G}) = \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ X}( \mathcal{F}, \mathcal{G}) \otimes _{\mathcal{O}_ X} \mathcal{E}^\vee , and
\mathop{\mathrm{Ext}}\nolimits ^ i_ X( \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{E}, \mathcal{G}) = \mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{F}, \mathcal{E}^\vee \otimes _{\mathcal{O}_ X} \mathcal{G}).
Here \mathcal{F} and \mathcal{G} are \mathcal{O}_ X-modules. Conclude that
\mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{E}, \mathcal{G}) = H^ i(X, \mathcal{E}^\vee \otimes _{\mathcal{O}_ X} \mathcal{G})
Exercise 111.48.5. Let X be a ringed space. Let \mathcal{E} be a finite locally free \mathcal{O}_ X-module. Construct a trace map
\mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{E}, \mathcal{E}) \to H^ i(X, \mathcal{O}_ X)
for all i. Generalize to a trace map
\mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{E}, \mathcal{E} \otimes _{\mathcal{O}_ X} \mathcal{F}) \to H^ i(X, \mathcal{F})
for any \mathcal{O}_ X-module \mathcal{F}.
Exercise 111.48.6. Let k be a field. Let X = \mathbf{P}^ d_ k. Set \omega _{X/k} = \mathcal{O}_ X(-d - 1). Prove that for finite locally free modules \mathcal{E}, \mathcal{F} the cup product on Ext combined with the trace map on Ext
\mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{E}, \mathcal{F} \otimes _{\mathcal{O}_ X} \omega _{X/k}) \times \mathop{\mathrm{Ext}}\nolimits ^{d - i}_ X(\mathcal{F}, \mathcal{E}) \to \mathop{\mathrm{Ext}}\nolimits _ X^ d(\mathcal{F}, \mathcal{F} \otimes _{\mathcal{O}_ X} \omega _{X/k}) \to H^ d(X, \omega _{X/k}) = k
produces a nondegenerate pairing. Hint: you can either reprove duality in this setting or you can reduce to cohomology of sheaves and apply the Serre duality theorem as proved in the lectures.
Comments (0)