Exercise 111.48.4. Let $X$ be a ringed space. Let $\mathcal{E}$ be a finite locally free $\mathcal{O}_ X$-module with dual $\mathcal{E}^\vee = \mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(\mathcal{E}, \mathcal{O}_ X)$. Prove the following statements
$\mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ X}( \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{E}, \mathcal{G}) = \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ X}( \mathcal{F}, \mathcal{E}^\vee \otimes _{\mathcal{O}_ X} \mathcal{G}) = \mathop{\mathcal{E}\! \mathit{xt}}\nolimits ^ i_{\mathcal{O}_ X}( \mathcal{F}, \mathcal{G}) \otimes _{\mathcal{O}_ X} \mathcal{E}^\vee $, and
$\mathop{\mathrm{Ext}}\nolimits ^ i_ X( \mathcal{F} \otimes _{\mathcal{O}_ X} \mathcal{E}, \mathcal{G}) = \mathop{\mathrm{Ext}}\nolimits ^ i_ X(\mathcal{F}, \mathcal{E}^\vee \otimes _{\mathcal{O}_ X} \mathcal{G})$.
Here $\mathcal{F}$ and $\mathcal{G}$ are $\mathcal{O}_ X$-modules. Conclude that
Comments (0)