111.38 Morphisms from the projective line
In this section we study morphisms from \mathbf{P}^1 to projective schemes.
Exercise 111.38.1. Let k be a field. Let k[t] \subset k(t) be the inclusion of the polynomial ring into its fraction field. Let X be a finite type scheme over k. Show that for any morphism
\varphi : \mathop{\mathrm{Spec}}(k(t)) \longrightarrow X
over k, there exist a nonzero f \in k[t] and a morphism \psi : \mathop{\mathrm{Spec}}(k[t, 1/f]) \to X over k such that \varphi is the composition
\mathop{\mathrm{Spec}}(k(t)) \longrightarrow \mathop{\mathrm{Spec}}(k[t, 1/f]) \longrightarrow X
Exercise 111.38.2. Let k be a field. Let k[t] \subset k(t) be the inclusion of the polynomial ring into its fraction field. Show that for any morphism
\varphi : \mathop{\mathrm{Spec}}(k(t)) \longrightarrow \mathbf{P}^ n_ k
over k, there exists a morphism \psi : \mathop{\mathrm{Spec}}(k[t]) \to \mathbf{P}^ n_ k over k such that \varphi is the composition
\mathop{\mathrm{Spec}}(k(t)) \longrightarrow \mathop{\mathrm{Spec}}(k[t]) \longrightarrow \mathbf{P}^ n_ k
Hint: the image of \varphi is in a standard open D_+(T_ i) for some i; then show that you can “clear denominators”.
Exercise 111.38.3. Let k be a field. Let k[t] \subset k(t) be the inclusion of the polynomial ring into its fraction field. Let X be a projective scheme over k. Show that for any morphism
\varphi : \mathop{\mathrm{Spec}}(k(t)) \longrightarrow X
over k, there exists a morphism \psi : \mathop{\mathrm{Spec}}(k[t]) \to X over k such that \varphi is the composition
\mathop{\mathrm{Spec}}(k(t)) \longrightarrow \mathop{\mathrm{Spec}}(k[t]) \longrightarrow X
Hint: use Exercise 111.38.2.
Exercise 111.38.4. Let k be a field. Let X be a projective scheme over k. Let K be the function field of \mathbf{P}^1_ k (see hint below). Show that for any morphism
\varphi : \mathop{\mathrm{Spec}}(K) \longrightarrow X
over k, there exists a morphism \psi : \mathbf{P}^1_ k \to X over k such that \varphi is the composition
\mathop{\mathrm{Spec}}(k(t)) \longrightarrow \mathbf{P}^1_ k \longrightarrow X
Hint: use Exercise 111.38.3 for each of the two pieces of the affine open covering \mathbf{P}^1_ k = D_+(T_0) \cup D_+(T_1), use that D_+(T_0) is the spectrum of a polynomial ring and that K is the fraction field of this polynomial ring.
Comments (0)