Exercise 110.38.1. Let $k$ be a field. Let $k[t] \subset k(t)$ be the inclusion of the polynomial ring into its fraction field. Let $X$ be a finite type scheme over $k$. Show that for any morphism

over $k$, there exist a nonzero $f \in k[t]$ and a morphism $\psi : \mathop{\mathrm{Spec}}(k[t, 1/f]) \to X$ over $k$ such that $\varphi $ is the composition

## Comments (0)