Processing math: 100%

The Stacks project

Lemma 69.4.4. With S, X, Y, \pi , \mathcal{A}, \mathcal{B}, \varphi , and f as in Lemma 69.4.3 we have

K \otimes _\mathcal {B}^\mathbf {L} Rf_*M = Rf_*(Lf^*K \otimes _\mathcal {A}^\mathbf {L} M)

in D(\mathcal{B}) for any K \in D(\mathcal{B}) and M \in D(\mathcal{A}).

Proof. Since f_* is exact (Lemma 69.4.1) the functor Rf_* is computed by applying f_* to any representative complex. Choose a complex \mathcal{K}^\bullet of \mathcal{B}-modules representing K which is K-flat with flat terms, see Cohomology on Sites, Lemma 21.17.11. Then f^*\mathcal{K}^\bullet is K-flat with flat terms, see Cohomology on Sites, Lemma 21.18.1. Choose any complex \mathcal{M}^\bullet of \mathcal{A}-modules representing M. Then we have to show

\text{Tot}(\mathcal{K}^\bullet \otimes _\mathcal {B} f_*\mathcal{M}^\bullet ) = f_*\text{Tot}(f^*\mathcal{K}^\bullet \otimes _\mathcal {A} \mathcal{M}^\bullet )

because by our choices these complexes represent the right and left hand side of the formula in the lemma. Since f_* commutes with direct sums (for example by the description of the stalks in Lemma 69.4.2), this reduces to the equalities

\mathcal{K}^ n \otimes _\mathcal {B} f_*\mathcal{M}^ m = f_*(f^*\mathcal{K}^ n \otimes _\mathcal {A} \mathcal{M}^ m)

which are true by Lemma 69.4.3. \square


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.