Lemma 107.5.16. If $\mathcal{X}$ is a pseudo-catenary locally Noetherian algebraic stack, and if $\mathcal{Y} \to \mathcal{X}$ is a locally of finite type morphism, then there exists a smooth surjective morphism $V \to \mathcal{Y}$ whose source is a universally catenary scheme; thus $\mathcal{Y}$ is again pseudo-catenary.
Proof. By assumption we may find a smooth surjective morphism $U \to \mathcal{X}$ whose source is a universally catenary scheme. The base-change $U\times _{\mathcal{X}} \mathcal{Y}$ is then an algebraic stack; let $V \to U\times _{\mathcal{X}} \mathcal{Y}$ be a smooth surjective morphism whose source is a scheme. The composite $V \to U\times _{\mathcal{X}} \mathcal{Y} \to \mathcal{Y}$ is then smooth and surjective (being a composite of smooth and surjective morphisms), while the morphism $V \to U\times _{\mathcal{X}} \mathcal{Y} \to U$ is locally of finite type (being a composite of morphisms that are locally finite type). Since $U$ is universally catenary, we see that $V$ is universally catenary (by Morphisms, Lemma 29.17.2), as claimed. $\square$
Comments (0)