Lemma 107.6.1. Let \mathcal{X} be a locally Noetherian algebraic stack. Let U \to \mathcal{X} be a smooth morphism and let u \in U. Then
\dim (\mathcal{O}_{U, \overline{u}}) - \dim (\mathcal{O}_{R_ u, e(\overline{u})}) = 2\dim (\mathcal{O}_{U, \overline{u}}) - \dim (\mathcal{O}_{R, e(\overline{u})})
Here R = U \times _\mathcal {X} U with projections s, t : R \to U and diagonal e : U \to R and R_ u is the fibre of s : R \to U over u.
Proof.
This is true because s : \mathcal{O}_{U, \overline{u}} \to \mathcal{O}_{R, e(\overline{u})} is a flat local homomorphism of Noetherian local rings and hence
\dim (\mathcal{O}_{R, e(\overline{u})}) = \dim (\mathcal{O}_{U, \overline{u}}) + \dim (\mathcal{O}_{R_ u, e(\overline{u})})
by Algebra, Lemma 10.112.7.
\square
Comments (0)