Lemma 78.11.6. Let $B \to S$ be as in Section 78.3. Let $(U, R, s, t, c)$ be a groupoid in algebraic spaces over $B$. Let $B' \to B$ be a morphism of algebraic spaces. Then the base changes $U' = B' \times _ B U$, $R' = B' \times _ B R$ endowed with the base changes $s'$, $t'$, $c'$ of the morphisms $s, t, c$ form a groupoid in algebraic spaces $(U', R', s', t', c')$ over $B'$ and the projections determine a morphism $(U', R', s', t', c') \to (U, R, s, t, c)$ of groupoids in algebraic spaces over $B$.

**Proof.**
Omitted. Hint: $R' \times _{s', U', t'} R' = B' \times _ B (R \times _{s, U, t} R)$.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)