Lemma 101.45.1. Let f : \mathcal{X} \to \mathcal{Y} be a morphism of algebraic stacks. If \mathcal{I}_\mathcal {X} \to \mathcal{X} \times _\mathcal {Y} \mathcal{I}_\mathcal {Y} is an isomorphism, then f is representable by algebraic spaces.
Proof. Immediate from Lemma 101.6.2. \square
Comments (0)