Lemma 101.45.5. Let
be a cartesian diagram of algebraic stacks.
Let $x' \in |\mathcal{X}'|$ with image $x \in |\mathcal{X}|$. If $f$ induces an isomorphism between automorphism groups at $x$ and $f(x)$ (Remark 101.19.5), then $f'$ induces an isomorphism between automorphism groups at $x'$ and $f(x')$.
If $\mathcal{I}_\mathcal {X} \to \mathcal{X} \times _\mathcal {Y} \mathcal{I}_\mathcal {Y}$ is an isomorphism, then $\mathcal{I}_{\mathcal{X}'} \to \mathcal{X}' \times _{\mathcal{Y}'} \mathcal{I}_{\mathcal{Y}'}$ is an isomorphism.
Comments (0)