Lemma 101.45.5. Let
be a cartesian diagram of algebraic stacks.
Let x' \in |\mathcal{X}'| with image x \in |\mathcal{X}|. If f induces an isomorphism between automorphism groups at x and f(x) (Remark 101.19.5), then f' induces an isomorphism between automorphism groups at x' and f(x').
If \mathcal{I}_\mathcal {X} \to \mathcal{X} \times _\mathcal {Y} \mathcal{I}_\mathcal {Y} is an isomorphism, then \mathcal{I}_{\mathcal{X}'} \to \mathcal{X}' \times _{\mathcal{Y}'} \mathcal{I}_{\mathcal{Y}'} is an isomorphism.
Comments (0)