Definition 106.12.1. Let \mathcal{X} be an algebraic stack. Let f : \mathcal{X} \to Y be a morphism to an algebraic space Y.
We say f is a categorical moduli space if any morphism \mathcal{X} \to W to an algebraic space W factors uniquely through f.
We say f is a uniform categorical moduli space if for any flat morphism Y' \to Y of algebraic spaces the base change f' : Y' \times _ Y \mathcal{X} \to Y' is a categorical moduli space.
Let \mathcal{C} be a full subcategory of the category of algebraic spaces.
We say f is a categorical moduli space in \mathcal{C} if Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) and any morphism \mathcal{X} \to W with W \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) factors uniquely through f.
We say is a uniform categorical moduli space in \mathcal{C} if Y \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{C}) and for every flat morphism Y' \to Y in \mathcal{C} the base change f' : Y' \times _ Y \mathcal{X} \to Y' is a categorical moduli space in \mathcal{C}.
Comments (0)