Lemma 47.22.3. Let $A$ be a Noetherian ring and let $I \subset A$ be an ideal. Let $\omega _ A^\bullet $ be a dualizing complex.
$\omega _ A^\bullet \otimes _ A A^ h$ is a dualizing complex on the henselization $(A^ h, I^ h)$ of the pair $(A, I)$,
$\omega _ A^\bullet \otimes _ A A^\wedge $ is a dualizing complex on the $I$-adic completion $A^\wedge $, and
if $A$ is local, then $\omega _ A^\bullet \otimes _ A A^ h$, resp. $\omega _ A^\bullet \otimes _ A A^{sh}$ is a dualzing complex on the henselization, resp. strict henselization of $A$.
Comments (0)