The Stacks project

Lemma 93.8.11. In Lemma 93.8.3 if $P = k[[x_1, \ldots , x_ n]]/(f)$ for some nonzero $f \in (x_1, \ldots , x_ n)^2$, then

  1. $\text{Inf}(\mathcal{D}\! \mathit{ef}_ P)$ is finite dimensional if and only if $n = 1$, and

  2. $T\mathcal{D}\! \mathit{ef}_ P$ is finite dimensional if

    \[ \sqrt{(f, \partial f/\partial x_1, \ldots , \partial f/\partial x_ n)} = (x_1, \ldots , x_ n) \]

Proof. Proof of (1). Consider the derivations $\partial /\partial x_ i$ of $k[[x_1, \ldots , x_ n]]$ over $k$. Write $f_ i = \partial f/\partial x_ i$. The derivation

\[ \theta = \sum h_ i \partial /\partial x_ i \]

of $k[[x_1, \ldots , x_ n]]$ induces a derivation of $P = k[[x_1, \ldots , x_ n]]/(f)$ if and only if $\sum h_ i f_ i \in (f)$. Moreover, the induced derivation of $P$ is zero if and only if $h_ i \in (f)$ for $i = 1, \ldots , n$. Thus we find

\[ \mathop{\mathrm{Ker}}((f_1, \ldots , f_ n) : P^{\oplus n} \longrightarrow P) \subset \text{Der}_ k(P, P) \]

The left hand side is a finite dimensional $k$-vector space only if $n = 1$; we omit the proof. We also leave it to the reader to see that the right hand side has finite dimension if $n = 1$. This proves (1).

Proof of (2). Let $Q$ be a flat deformation of $P$ over $k[\epsilon ]$ as in the proof of Lemma 93.8.3. Choose lifts $q_ i \in Q$ of the image of $x_ i$ in $P$. Then $Q$ is a complete local ring with maximal ideal generated by $q_1, \ldots , q_ n$ and $\epsilon $ (small argument omitted). Thus we get a surjection

\[ k[\epsilon ][[x_1, \ldots , x_ n]] \longrightarrow Q,\quad x_ i \longmapsto q_ i \]

Choose an element of the form $f + \epsilon g \in k[\epsilon ][[x_1, \ldots , x_ n]]$ mapping to zero in $Q$. Observe that $g$ is well defined modulo $(f)$. Since $Q$ is flat over $k[\epsilon ]$ we get

\[ Q = k[\epsilon ][[x_1, \ldots , x_ n]]/(f + \epsilon g) \]

Finally, if we changing the choice of $q_ i$ amounts to changing the coordinates $x_ i$ into $x_ i + \epsilon h_ i$ for some $h_ i \in k[[x_1, \ldots , x_ n]]$. Then $f + \epsilon g$ changes into $f + \epsilon (g + \sum h_ i f_ i)$ where $f_ i = \partial f/\partial x_ i$. Thus we see that the isomorphism class of the deformation $Q$ is determined by an element of

\[ k[[x_1, \ldots , x_ n]]/ (f, \partial f/\partial x_1, \ldots , \partial f/\partial x_ n) \]

This has finite dimension over $k$ if and only if its support is the closed point of $k[[x_1, \ldots , x_ n]]$ if and only if $\sqrt{(f, \partial f/\partial x_1, \ldots , \partial f/\partial x_ n)} = (x_1, \ldots , x_ n)$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DY5. Beware of the difference between the letter 'O' and the digit '0'.