Lemma 47.27.2. Let $R \to A$ be a flat ring map of finite presentation. Any two relative dualizing complexes for $R \to A$ are isomorphic.
Proof. Let $K$ and $L$ be two relative dualizing complexes for $R \to A$. Denote $K_1 = K \otimes _ A^\mathbf {L} (A \otimes _ R A)$ and $L_2 = (A \otimes _ R A) \otimes _ A^\mathbf {L} L$ the derived base changes via the first and second coprojections $A \to A \otimes _ R A$. By symmetry the assumption on $L_2$ implies that $R\mathop{\mathrm{Hom}}\nolimits _{A \otimes _ R A}(A, L_2)$ is isomorphic to $A$. By More on Algebra, Lemma 15.98.3 part (3) applied twice we have
Applying the restriction functor $D(A \otimes _ R A) \to D(A)$ for either coprojection we obtain the desired result. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #9261 by andy on
Comment #9262 by andy on