Loading [MathJax]/extensions/tex2jax.js

The Stacks project

Exercise 111.46.2. Let $k$ be an algebraically closed field. Let $X$ be a smooth curve over $k$. Let $r \geq 1$. Show that the closed subset

\[ D \subset X \times X^ r = X^{r + 1} \]

whose closed points are the tuples $(x, x_1, \ldots , x_ r)$ with $x = x_ i$ for some $i$, has an invertible ideal sheaf. In other words, show that $D$ is an effective Cartier divisor. Hints: reduce to $r = 1$ and use that $X$ is a smooth curves to say something about the diagonal (look in books for this).


Comments (0)


Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.