The Stacks project

Exercise 111.46.3. Let $k$ be an algebraically closed field. Let $X$ be a smooth projective curve over $k$. Let $T$ be a scheme of finite type over $k$ and let

\[ D_1 \subset X \times T \quad \text{and}\quad D_2 \subset X \times T \]

be two effective Cartier divisors such that for $t \in T$ the fibres $D_{i, t} \subset X_ t$ are not dense (i.e., do not contain the generic point of the curve $X_ t$). Prove that there is a canonical closed subscheme $Z \subset T$ such that a closed point $t \in T$ is in $Z$ if and only if for the scheme theoretic fibres $D_{1, t}$, $D_{2, t}$ of $D_1$, $D_2$ we have

\[ D_{1, t} \subset D_{2, t} \]

as closed subschemes of $X_ t$. Hints: Show that, possibly after shrinking $T$, you may assume $T = \mathop{\mathrm{Spec}}(A)$ is affine and there is an affine open $U \subset X$ such that $D_ i \subset U \times T$. Then show that $M_1 = \Gamma (D_1, \mathcal{O}_{D_1})$ is a finite locally free $A$-module (here you will need some nontrivial algebra — ask your friends). After shrinking $T$ you may assume $M_1$ is a free $A$-module. Then look at

\[ \Gamma (U \times T, \mathcal{I}_{D_2}) \to M_1 = A^{\oplus N} \]

and you define $Z$ as the closed subscheme cut out by the ideal generated by coefficients of vectors in the image of this map. Explain why this works (this will require perhaps a bit more commutative algebra).


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EGB. Beware of the difference between the letter 'O' and the digit '0'.