Remark 47.7.9. Let (R, \mathfrak m, \kappa ) be a Noetherian local ring. Let E be an injective hull of \kappa over R. Here is an addendum to Matlis duality: If N is an \mathfrak m-power torsion module and M = \mathop{\mathrm{Hom}}\nolimits _ R(N, E) is a finite module over the completion of R, then N satisfies the descending chain condition. Namely, for any submodules N'' \subset N' \subset N with N'' \not= N', we can find an embedding \kappa \subset N''/N' and hence a nonzero map N' \to E annihilating N'' which we can extend to a map N \to E annihilating N''. Thus N \supset N' \mapsto M' = \mathop{\mathrm{Hom}}\nolimits _ R(N/N', E) \subset M is an inclusion preserving map from submodules of N to submodules of M, whence the conclusion.
Comments (1)
Comment #10085 by Alex Scheffelin on
There are also: