Lemma 52.15.3. Let X be a Noetherian scheme. Let \mathcal{I} \subset \mathcal{O}_ X be a quasi-coherent sheaf of ideals. The functor
is fully faithful, see Categories, Remark 4.22.5.
Lemma 52.15.3. Let X be a Noetherian scheme. Let \mathcal{I} \subset \mathcal{O}_ X be a quasi-coherent sheaf of ideals. The functor
is fully faithful, see Categories, Remark 4.22.5.
Proof. Let (\mathcal{F}_ n) and (\mathcal{G}_ n) be objects of \textit{Coh}(X, \mathcal{I}). A morphism of pro-objects \alpha from (\mathcal{F}_ n) to (\mathcal{G}_ n) is given by a system of maps \alpha _ n : \mathcal{F}_{n'(n)} \to \mathcal{G}_ n where \mathbf{N} \to \mathbf{N}, n \mapsto n'(n) is an increasing function. Since \mathcal{F}_ n = \mathcal{F}_{n'(n)}/\mathcal{I}^ n\mathcal{F}_{n'(n)} and since \mathcal{G}_ n is annihilated by \mathcal{I}^ n we see that \alpha _ n induces a map \mathcal{F}_ n \to \mathcal{G}_ n. \square
Comments (0)