Lemma 52.15.9. Let $A$ be a Noetherian ring. Let $f \in \mathfrak a \subset A$ be an element of an ideal of $A$. Let $U = \mathop{\mathrm{Spec}}(A) \setminus V(\mathfrak a)$. Let $\mathcal{V}$ be the set of open subschemes of $U$ containing $U \cap V(f)$ ordered by reverse inclusion. Assume

1. $A$ is $f$-adically complete,

2. $f$ is a nonzerodivisor,

3. $H^1_\mathfrak a(A/fA)$ is a finite $A$-module.

Then the completion functor

$\mathop{\mathrm{colim}}\nolimits _\mathcal {V} \textit{Coh}(\mathcal{O}_ V) \longrightarrow \textit{Coh}(U, f\mathcal{O}_ U), \quad \mathcal{F} \longmapsto \mathcal{F}^\wedge$

is fully faithful on the full subcategory of finite locally free objects.

Proof. By Lemma 52.15.2 it suffices to show that

$\mathop{\mathrm{colim}}\nolimits _\mathcal {V} \Gamma (V, \mathcal{O}_ V) = \mathop{\mathrm{lim}}\nolimits \Gamma (U, \mathcal{O}_ U/I^ n\mathcal{O}_ U)$

This follows immediately from Lemma 52.12.5. $\square$

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).