Lemma 34.10.2. A standard fpqc covering is a standard V covering.

**Proof.**
Let $\{ X_ i \to X\} _{i = 1, \ldots , n}$ be a standard fpqc covering (Definition 34.9.10). Let $g : \mathop{\mathrm{Spec}}(V) \to X$ be a morphism where $V$ is a valuation ring. Let $x \in X$ be the image of the closed point of $\mathop{\mathrm{Spec}}(V)$. Choose an $i$ and a point $x_ i \in X_ i$ mapping to $x$. Then $\mathop{\mathrm{Spec}}(V) \times _ X X_ i$ has a point $x'_ i$ mapping to the closed point of $\mathop{\mathrm{Spec}}(V)$. Since $\mathop{\mathrm{Spec}}(V) \times _ X X_ i \to \mathop{\mathrm{Spec}}(V)$ is flat we can find a specialization $x''_ i \leadsto x'_ i$ of points of $\mathop{\mathrm{Spec}}(V) \times _ X X_ i$ with $x''_ i$ mapping to the generic point of $\mathop{\mathrm{Spec}}(V)$, see Morphisms, Lemma 29.25.9. By Schemes, Lemma 26.20.4 we can choose a valuation ring $W$ and a morphism $h : \mathop{\mathrm{Spec}}(W) \to \mathop{\mathrm{Spec}}(V) \times _ X X_ i$ such that $h$ maps the generic point of $\mathop{\mathrm{Spec}}(W)$ to $x''_ i$ and the closed point of $\mathop{\mathrm{Spec}}(W)$ to $x'_ i$. We obtain a commutative diagram

where $V \to W$ is an extension of valuation rings. This proves the lemma. $\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)

There are also: