Lemma 110.80.2. The scheme $\mathop{\mathrm{Spec}}(\mathbf{Z})$ is not quasi-compact in the canonical topology on the category of schemes.
Proof. With notation as above consider the family of morphisms
By Descent, Lemma 35.13.5 and the two claims proved above this is a universal effective epimorphism. In any category with fibre products, the universal effective epimorphisms give $\mathcal{C}$ the structure of a site (modulo some set theoretical issues which are easy to fix) defining the canonical topology. Thus $\mathcal{W}$ is a covering for the canonical topology. On the other hand, we have seen above that any finite subfamily
factors through $\mathop{\mathrm{Spec}}(\mathbf{Z}[1/p])$ for some $p$. Hence this finite family cannot be a universal effective epimorphism and more generally no universal effective epimorphism $\{ g_ j : T_ j \to \mathop{\mathrm{Spec}}(\mathbf{Z})\} $ can refine $\{ \mathop{\mathrm{Spec}}(\mathbf{Z}_{A_ i}) \to \mathop{\mathrm{Spec}}(\mathbf{Z})\} _{i = 1, \ldots , n}$. By Sites, Definition 7.17.1 this means that $\mathop{\mathrm{Spec}}(\mathbf{Z})$ is not quasi-compact in the canonical topology. To see that our notion of quasi-compactness agrees with the usual topos theoretic definition, see Sites, Lemma 7.17.3. $\square$
Comments (2)
Comment #6530 by Jonas Ehrhard on
Comment #6582 by Johan on
There are also: