The Stacks project

Lemma 110.79.2. The scheme $\mathop{\mathrm{Spec}}(\mathbf{Z})$ is not quasi-compact in the canonical topology on the category of schemes.

Proof. With notation as above consider the family of morphisms

\[ \mathcal{W} = \{ \mathop{\mathrm{Spec}}(\mathbf{Z}_ A) \to \mathop{\mathrm{Spec}}(\mathbf{Z})\} _{A \in U} \]

By Descent, Lemma 35.13.5 and the two claims proved above this is a universal effective epimorphism. In any category with fibre products, the universal effective epimorphisms give $\mathcal{C}$ the structure of a site (modulo some set theoretical issues which are easy to fix) defining the canonical topology. Thus $\mathcal{W}$ is a covering for the canonical topology. On the other hand, we have seen above that any finite subfamily

\[ \{ \mathop{\mathrm{Spec}}(\mathbf{Z}_{A_ i}) \to \mathop{\mathrm{Spec}}(\mathbf{Z})\} _{i = 1, \ldots , n},\quad n \in \mathbf{N}, A_1, \ldots , A_ n \in U \]

factors through $\mathop{\mathrm{Spec}}(\mathbf{Z}[1/p])$ for some $p$. Hence this finite family cannot be a universal effective epimorphism and more generally no universal effective epimorphism $\{ g_ j : T_ j \to \mathop{\mathrm{Spec}}(\mathbf{Z})\} $ can refine $\{ \mathop{\mathrm{Spec}}(\mathbf{Z}_{A_ i}) \to \mathop{\mathrm{Spec}}(\mathbf{Z})\} _{i = 1, \ldots , n}$. By Sites, Definition 7.17.1 this means that $\mathop{\mathrm{Spec}}(\mathbf{Z})$ is not quasi-compact in the canonical topology. To see that our notion of quasi-compactness agrees with the usual topos theoretic definition, see Sites, Lemma 7.17.3. $\square$


Comments (2)

Comment #6530 by Jonas Ehrhard on

This might be nitpicking, but for consistency reasons I think it should be "universal effective epimorphism" instead of "universally".

There are also:

  • 2 comment(s) on Section 110.79: The spectrum of the integers is not quasi-compact

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EUG. Beware of the difference between the letter 'O' and the digit '0'.