Lemma 15.95.7. Let $A$ be a ring and let $f \in A$ be a nonzerodivisor. Let $M^\bullet $ be a complex of $f$-torsion free $A$-modules. For $i \in \mathbf{Z}$ the following are equivalent
$\mathop{\mathrm{Ker}}(d^ i \bmod f^2)$ surjects onto $\mathop{\mathrm{Ker}}(d^ i \bmod f)$,
$\beta : H^ i(M^\bullet \otimes _ A f^ iA/f^{i + 1}A) \to H^{i + 1}(M^\bullet \otimes _ A f^{i + 1}A/f^{i + 2}A)$ is zero.
These equivalent conditions are implied by the condition $H^{i + 1}(M^\bullet )[f] = 0$.
Comments (0)
There are also: