Lemma 42.43.3. In Situation 42.7.1 let $X$ be locally of finite type over $S$. Let $\mathcal{E}$ be a finite locally free $\mathcal{O}_ X$-module with dual $\mathcal{E}^\vee $. Then

in $A^ i(X)$.

Lemma 42.43.3. In Situation 42.7.1 let $X$ be locally of finite type over $S$. Let $\mathcal{E}$ be a finite locally free $\mathcal{O}_ X$-module with dual $\mathcal{E}^\vee $. Then

\[ c_ i(\mathcal{E}^\vee ) = (-1)^ i c_ i(\mathcal{E}) \]

in $A^ i(X)$.

**Proof.**
Choose a morphism $\pi : P \to X$ as in Lemma 42.43.1. By the injectivity of $\pi ^*$ (after any base change) it suffices to prove the relation between the Chern classes of $\mathcal{E}$ and $\mathcal{E}^\vee $ after pulling back to $P$. Thus we may assume there exist invertible $\mathcal{O}_ X$-modules ${\mathcal L}_ i$, $i = 1, \ldots , r$ and a filtration

\[ 0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \mathcal{E}_2 \subset \ldots \subset \mathcal{E}_ r = \mathcal{E} \]

such that $\mathcal{E}_ i/\mathcal{E}_{i - 1} \cong \mathcal{L}_ i$. Then we obtain the dual filtration

\[ 0 = \mathcal{E}_ r^\perp \subset \mathcal{E}_1^\perp \subset \mathcal{E}_2^\perp \subset \ldots \subset \mathcal{E}_0^\perp = \mathcal{E}^\vee \]

such that $\mathcal{E}_{i - 1}^\perp /\mathcal{E}_ i^\perp \cong \mathcal{L}_ i^{\otimes -1}$. Set $x_ i = c_1(\mathcal{L}_ i)$. Then $c_1(\mathcal{L}_ i^{\otimes -1}) = - x_ i$ by Lemma 42.25.2. By Lemma 42.40.4 we have

\[ c(\mathcal{E}) = \prod \nolimits _{i = 1}^ r (1 + x_ i) \quad \text{and}\quad c(\mathcal{E}^\vee ) = \prod \nolimits _{i = 1}^ r (1 - x_ i) \]

in $A^*(X)$. The result follows from a formal computation which we omit. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)