Lemma 42.47.2. In Lemma 42.47.1 the bivariant class $P'_ p(E_2)$, resp. $c'_ p(E_2)$ in $A^ p(X_2 \to X)$ does not depend on the choice of $X_1$.

**Proof.**
Suppose that $X_1' \subset X$ is another closed subscheme such that $X = X'_1 \cup X_2$ set theoretically and the restriction $E_2|_{X'_1 \cap X_2}$ is zero, resp. isomorphic to a finite locally free $\mathcal{O}_{X'_1 \cap X_2}$-module of rank $< p$ sitting in cohomological degree $0$. Then $X = (X_1 \cap X'_1) \cup X_2$. Hence we can write any element $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X)$ as $i_*\beta + i_{2, *}\alpha _2$ with $\alpha _2 \in \mathop{\mathrm{CH}}\nolimits _ k(X'_2)$ and $\beta \in \mathop{\mathrm{CH}}\nolimits _ k(X_1 \cap X'_1)$. Thus it is clear that $P'_ p(E_2) \cap \alpha = P_ p(E_2) \cap \alpha _2 \in \mathop{\mathrm{CH}}\nolimits _{k - p}(X_2)$, resp. $c'_ p(E_2) \cap \alpha = c_ p(E_2) \cap \alpha _2 \in \mathop{\mathrm{CH}}\nolimits _{k - p}(X_2)$, is independent of whether we use $X_1$ or $X'_1$. Similarly after any base change.
$\square$

## Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)