Lemma 42.46.5. In Lemma 42.46.1 let $f : Y \to X$ be locally of finite type and say $c \in A^*(Y \to X)$. Then

in $A^*(Y_2 \to Y)$ where $f_2 : Y_2 \to X_2$ is the base change of $f$.

Lemma 42.46.5. In Lemma 42.46.1 let $f : Y \to X$ be locally of finite type and say $c \in A^*(Y \to X)$. Then

\[ c \circ P'_ p(E_2) = P'_ p(Lf_2^*E_2) \circ c \quad \text{resp.}\quad c \circ c'_ p(E_2) = c'_ p(Lf_2^*E_2) \circ c \]

in $A^*(Y_2 \to Y)$ where $f_2 : Y_2 \to X_2$ is the base change of $f$.

**Proof.**
Let $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X)$. We may write

\[ \alpha = \alpha _1 + \alpha _2 \]

with $\alpha _ i \in \mathop{\mathrm{CH}}\nolimits _ k(X_ i)$; we are omitting the pushforwards by the closed immersions $X_ i \to X$. The reader then checks that $c'_ p(E_2) \cap \alpha = c_ p(E_2) \cap \alpha _2$, $c \cap c'_ p(E_2) \cap \alpha = c \cap c_ p(E_2) \cap \alpha _2$, $c \cap \alpha = c \cap \alpha _1 + c \cap \alpha _2$, and $c'_ p(Lf_2^*E_2) \cap c \cap \alpha = c_ p(Lf_2^*E_2) \cap c \cap \alpha _2$. We conclude by Lemma 42.45.3. $\square$

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like `$\pi$`

). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.

## Comments (0)