Lemma 42.47.6. In Lemma 42.47.1 let f : Y \to X be locally of finite type and say c \in A^*(Y \to X). Then
in A^*(Y_2 \to Y) where f_2 : Y_2 \to X_2 is the base change of f.
Lemma 42.47.6. In Lemma 42.47.1 let f : Y \to X be locally of finite type and say c \in A^*(Y \to X). Then
in A^*(Y_2 \to Y) where f_2 : Y_2 \to X_2 is the base change of f.
Proof. Let \alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X). We may write
with \alpha _ i \in \mathop{\mathrm{CH}}\nolimits _ k(X_ i); we are omitting the pushforwards by the closed immersions X_ i \to X. The reader then checks that c'_ p(E_2) \cap \alpha = c_ p(E_2) \cap \alpha _2, c \cap c'_ p(E_2) \cap \alpha = c \cap c_ p(E_2) \cap \alpha _2, c \cap \alpha = c \cap \alpha _1 + c \cap \alpha _2, and c'_ p(Lf_2^*E_2) \cap c \cap \alpha = c_ p(Lf_2^*E_2) \cap c \cap \alpha _2. We conclude by Lemma 42.46.6. \square
Comments (0)